46 research outputs found

    Eigenvalue Outliers of non-Hermitian Random Matrices with a Local Tree Structure

    Get PDF
    Spectra of sparse non-Hermitian random matrices determine the dynamics of complex processes on graphs. Eigenvalue outliers in the spectrum are of particular interest, since they determine the stationary state and the stability of dynamical processes. We present a general and exact theory for the eigenvalue outliers of random matrices with a local tree structure. For adjacency and Laplacian matrices of oriented random graphs, we derive analytical expressions for the eigenvalue outliers, the first moments of the distribution of eigenvector elements associated with an outlier, the support of the spectral density, and the spectral gap. We show that these spectral observables obey universal expressions, which hold for a broad class of oriented random matrices.Comment: 25 pages, 4 figure

    Universal transient behavior in large dynamical systems on networks

    Full text link
    We analyze how the transient dynamics of large dynamical systems in the vicinity of a stationary point, modeled by a set of randomly coupled linear differential equations, depends on the network topology. We characterize the transient response of a system through the evolution in time of the squared norm of the state vector, which is averaged over different realizations of the initial perturbation. We develop a mathematical formalism that computes this quantity for graphs that are locally tree-like. We show that for unidirectional networks the theory simplifies and general analytical results can be derived. For example, we derive analytical expressions for the average squared norm for random directed graphs with a prescribed degree distribution. These analytical results reveal that unidirectional systems exhibit a high degree of universality in the sense that the average squared norm only depends on a single parameter encoding the average interaction strength between the individual constituents. In addition, we derive analytical expressions for the average squared norm for unidirectional systems with fixed diagonal disorder and with bimodal diagonal disorder. We illustrate these results with numerical experiments on large random graphs and on real-world networks.Comment: 19 pages, 7 figures. Substantially enlarged version. Submitted to Physical Review Researc

    Second Law of Thermodynamics at Stopping Times

    Get PDF
    Events in mesoscopic systems often take place at first-passage times, as is for instance the case for a colloidal particle that escapes a metastable state. An interesting question is how much work an external agent has done on a particle when it escapes a metastable state. We develop a thermodynamic theory for processes in mesoscopic systems that terminate at stopping times, which generalize first-passage times. This theory implies a thermodynamic bound, reminiscent of the second law of thermodynamics, for the work exerted by an external protocol on a mesoscopic system at a stopping time. As an illustration, we use this law to bound the work required to stretch a polymer to a certain length or to let a particle escape from a metastable state

    Universal tradeoff relation between speed, uncertainty, and dissipation in nonequilibrium stationary states

    Full text link
    We derive universal thermodynamic inequalities that bound from below the moments of first-passage times of stochastic currents in nonequilibrium stationary states and in the limit where the thresholds that define the first-passage problem are large. These inequalities describe a tradeoff between speed, uncertainty, and dissipation in nonequilibrium processes, which are quantified, respectively, with the moments of the first-passage times of stochastic currents, the splitting probability, and the mean entropy production rate. Near equilibrium, the inequalities imply that mean-first passage times are lower bounded by the Van't Hoff-Arrhenius law, whereas far from thermal equilibrium the bounds describe a universal speed limit for rate processes. When the current is the stochastic entropy production, then the bounds are equalities, a remarkable property that follows from the fact that the exponentiated negative entropy production is a martingale.Comment: 50 pages, 5 figure

    Statistics of Infima and Stopping Times of Entropy Production and Applications to Active Molecular Processes

    Full text link
    We study the statistics of infima, stopping times and passage probabilities of entropy production in nonequilibrium steady states, and show that they are universal. We consider two examples of stopping times: first-passage times of entropy production and waiting times of stochastic processes, which are the times when a system reaches for the first time a given state. Our main results are: (i) the distribution of the global infimum of entropy production is exponential with mean equal to minus Boltzmann's constant; (ii) we find the exact expressions for the passage probabilities of entropy production to reach a given value; (iii) we derive a fluctuation theorem for stopping-time distributions of entropy production. These results have interesting implications for stochastic processes that can be discussed in simple colloidal systems and in active molecular processes. In particular, we show that the timing and statistics of discrete chemical transitions of molecular processes, such as, the steps of molecular motors, are governed by the statistics of entropy production. We also show that the extreme-value statistics of active molecular processes are governed by entropy production, for example, the infimum of entropy production of a motor can be related to the maximal excursion of a motor against the direction of an external force. Using this relation, we make predictions for the distribution of the maximum backtrack depth of RNA polymerases, which follows from our universal results for entropy-production infima.Comment: 30 pages, 13 figure

    Generic Properties of Stochastic Entropy Production

    Get PDF
    We derive an Ito stochastic differential equation for entropy production in nonequilibrium Langevin processes. Introducing a random-time transformation, entropy production obeys a one-dimensional drift-diffusion equation, independent of the underlying physical model. This transformation allows us to identify generic properties of entropy production. It also leads to an exact uncertainty equality relating the Fano factor of entropy production and the Fano factor of the random time, which we also generalize to non steady-state conditions.Comment: 5 pages, 5 figures (contains Supplemental Material, 7 pages

    Integral Fluctuation Relations for Entropy Production at Stopping Times

    Full text link
    A stopping time TT is the first time when a trajectory of a stochastic process satisfies a specific criterion. In this paper, we use martingale theory to derive the integral fluctuation relation ⟨e−Stot(T)⟩=1\langle e^{-S_{\rm tot}(T)}\rangle=1 for the stochastic entropy production StotS_{\rm tot} in a stationary physical system at stochastic stopping times TT. This fluctuation relation implies the law ⟨Stot(T)⟩≥0\langle S_{\rm tot}(T)\rangle\geq 0, which states that it is not possible to reduce entropy on average, even by stopping a stochastic process at a stopping time, and which we call the second law of thermodynamics at stopping times. This law implies bounds on the average amount of heat and work a system can extract from its environment when stopped at a random time. Furthermore, the integral fluctuation relation implies that certain fluctuations of entropy production are universal or are bounded by universal functions. These universal properties descend from the integral fluctuation relation by selecting appropriate stopping times: for example, when TT is a first-passage time for entropy production, then we obtain a bound on the statistics of negative records of entropy production. We illustrate these results on simple models of nonequilibrium systems described by Langevin equations and reveal two interesting phenomena. First, we demonstrate that isothermal mesoscopic systems can extract on average heat from their environment when stopped at a cleverly chosen moment and the second law at stopping times provides a bound on the average extracted heat. Second, we demonstrate that the average efficiency at stopping times of an autonomous stochastic heat engines, such as Feymann's ratchet, can be larger than the Carnot efficiency and the second law of thermodynamics at stopping times provides a bound on the average efficiency at stopping times.Comment: 37 pages, 6 figure

    Antagonistic interactions can stabilise fixed points in heterogeneous linear dynamical systems

    Get PDF
    We analyse the stability of large, linear dynamical systems of variables that interact through a fully connected random matrix and have inhomogeneous growth rates. We show that in the absence of correlations between the coupling strengths, a system with interactions is always less stable than a system without interactions. Contrarily to the uncorrelated case, interactions that are antagonistic, i.e., characterised by negative correlations, can stabilise linear dynamical systems. In particular, when the strength of the interactions is not too strong, systems with antagonistic interactions are more stable than systems without interactions. These results are obtained with an exact theory for the spectral properties of fully connected random matrices with diagonal disorder.Comment: 31 pages, 7 figure

    Extreme value statistics of edge currents in Markov jump processes and their use for entropy production estimation

    Get PDF
    The infimum of an integrated current is its extreme value against the direction of its average flow. Using martingale theory, we show that the infima of integrated edge currents in time-homogeneous Markov jump processes are geometrically distributed, with a mean value determined by the effective affinity measured by a marginal observer that only sees the integrated edge current. In addition, we show that a marginal observer can estimate a finite fraction of the average entropy production rate in the underlying nonequilibrium process from the extreme value statistics in the integrated edge current. The estimated average rate of dissipation obtained in this way equals the above mentioned effective affinity times the average edge current. Moreover, we show that estimates of dissipation based on extreme value statistics can be significantly more accurate than those based on thermodynamic uncertainty ratios, as well as those based on a naive estimator obtained by neglecting nonMarkovian correlations in the Kullback-Leibler divergence of the trajectories of the integrated edge current.Comment: 38 pages, 6 figure

    Localization and universality of eigenvectors in directed random graphs

    Get PDF
    Although the spectral properties of random graphs have been a long-standing focus of network theory, the properties of right eigenvectors of directed graphs have so far eluded an exact analytic treatment. We present a general theory for the statistics of the right eigenvector components in directed random graphs with a prescribed degree distribution and with randomly weighted links. We obtain exact analytic expressions for the inverse participation ratio and show that right eigenvectors of directed random graphs with a small average degree are localized. Remarkably, if the fourth moment of the degree distribution is finite, then the critical mean degree of the localization transition is independent of the degree fluctuations, which is different from localization in undirected graphs that is governed by degree fluctuations. We also show that in the high connectivity limit the distribution of the right eigenvector components is solely determined by the degree distribution. For delocalized eigenvectors, we recover in this limit the universal results from standard random matrix theory that are independent of the degree distribution, while for localized eigenvectors the eigenvector distribution depends on the degree distribution
    corecore